Artificial sensory system based on memristive devices

Author:

Kwon Ju Young1,Kim Ji Eun12,Kim Jong Sung12,Chun Suk Yeop13,Soh Keunho12,Yoon Jung Ho1ORCID

Affiliation:

1. Electronic Materials Research Center Korea Institute of Science and Technology (KIST) Seoul Republic of Korea

2. Department of Materials Science and Engineering Korea University Seoul Republic of Korea

3. KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul Republic of Korea

Abstract

AbstractIn the biological nervous system, the integration and cooperation of parallel system of receptors, neurons, and synapses allow efficient detection and processing of intricate and disordered external information. Such systems acquire and process environmental data in real‐time, efficiently handling complex tasks with minimal energy consumption. Memristors can mimic typical biological receptors, neurons, and synapses by implementing key features of neuronal signal‐processing functions such as selective adaption in receptors, leaky integrate‐and‐fire in neurons, and synaptic plasticity in synapses. External stimuli are sensitively detected and filtered by “artificial receptors,” encoded into spike signals via “artificial neurons,” and integrated and stored through “artificial synapses.” The high operational speed, low power consumption, and superior scalability of memristive devices make their integration with high‐performance sensors a promising approach for creating integrated artificial sensory systems. These integrated systems can extract useful data from a large volume of raw data, facilitating real‐time detection and processing of environmental information. This review explores the recent advances in memristor‐based artificial sensory systems. The authors begin with the requirements of artificial sensory elements and then present an in‐depth review of such elements demonstrated by memristive devices. Finally, the major challenges and opportunities in the development of memristor‐based artificial sensory systems are discussed.

Funder

Korea Institute of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3