Ultralow‐power in‐memory computing based on ferroelectric memcapacitor network

Author:

Tian Bobo12ORCID,Xie Zhuozhuang13,Chen Luqiu1,Hao Shenglan14,Liu Yifei1,Feng Guangdi1,Liu Xuefeng1,Liu Hongbo3,Yang Jing1,Zhang Yuanyuan1,Bai Wei1,Lin Tie5,Shen Hong5,Meng Xiangjian5,Zhong Ni1,Peng Hui1ORCID,Yue Fangyu1,Tang Xiaodong1,Wang Jianlu6,Zhu Qiuxiang127,Ivry Yachin8,Dkhil Brahim4,Chu Junhao159,Duan Chungang110

Affiliation:

1. Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai Center of Brain‐inspired Intelligent Materials and Devices, Department of Electronics East China Normal University Shanghai China

2. Zhejiang Lab Hangzhou China

3. School of Materials Science and Engineering Shanghai University of Engineering Science Shanghai China

4. CentraleSupélec, CNRS‐UMR8580, Laboratoire SPMS Université Paris‐Saclay Gif‐sur‐Yvette France

5. State Key Laboratory of Infrared Physics, Chinese Academy of Sciences Shanghai Institute of Technical Physics Shanghai China

6. Frontier Institute of Chip and System Fudan University Shanghai China

7. Guangdong Provisional Key Laboratory of Functional Oxide Materials and Devices Southern University of Science and Technology Shenzhen China

8. Department of Materials Science and Engineering Solid‐State Institute Technion‐Israel Institute of Technology Haifa Israel

9. Institute of Optoelectronics Fudan University Shanghai China

10. Collaborative Innovation Center of Extreme Optics Shanxi University Shanxi China

Abstract

AbstractAnalog storage through synaptic weights using conductance in resistive neuromorphic systems and devices inevitably generates harmful heat dissipation. This thermal issue not only limits the energy efficiency but also hampers the very‐large‐scale and highly complicated hardware integration as in the human brain. Here we demonstrate that the synaptic weights can be simulated by reconfigurable non‐volatile capacitances of a ferroelectric‐based memcapacitor with ultralow‐power consumption. The as‐designed metal/ferroelectric/metal/insulator/semiconductor memcapacitor shows distinct 3‐bit capacitance states controlled by the ferroelectric domain dynamics. These robust memcapacitive states exhibit uniform maintenance of more than 104 s and well endurance of 109 cycles. In a wired memcapacitor crossbar network hardware, analog vector‐matrix multiplication is successfully implemented to classify 9‐pixel images by collecting the sum of displacement currents (I = C × dV/dt) in each column, which intrinsically consumes zero energy in memcapacitors themselves. Our work sheds light on an ultralow‐power neural hardware based on ferroelectric memcapacitors.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3