The flow of anisotropic nanoparticles in solution and in blood

Author:

Lovegrove Jordan Thomas1,Kent Ben1,Förster Stephan2,Garvey Christopher J.3,Stenzel Martina H.1ORCID

Affiliation:

1. Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney New South Wales Australia

2. Forschungszentrum Jülich GmbH Jülich Germany

3. Forschungsneutronenquelle Heinz Maier‐Leibnitz FRM II and Physik Department E13 Technische Universität München Garching Germany

Abstract

AbstractThe alignment of anisotropic nanoparticles in flow has been used for a range of applications such as the preparation of strong fibres and the assembly of in‐plane aligned 1D‐nanoobjects that are used for electronic devices, sensors, energy and biological application. Important is also the flow behaviour of nanoparticles that were designed for nanomedical applications such as drug delivery. It is widely observed that non‐spherical nanoparticles have longer circulation times and a more favourable biodistribution. To be able to understand this behaviour, researchers have turned to analyzing the flow of non‐spherical nanoparticles in the blood stream. In this review, an overview of microfluidic techniques that are used to monitor the alignment of anisotropic nanoparticles in solution will be provided, which includes analysis by small angle X‐ray scattering (SAXS) and polarized light microscopy. The flow of these nanoparticles in blood is then discussed as the presence of red blood cells causes margination of some nanoparticles. Using fluorescence microscopy, the extent of margination can be identified, which coincides with the ability of nanoparticles to adhere to the cells grown along the wall. While these studies are mainly carried out in vitro using blood, initial investigations in vivo were able to confirm the unusual flow of anisotropic nanoparticles.

Funder

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3