Multivariate probit linear mixed models for multivariate longitudinal binary data

Author:

Lee Kuo‐Jung1,Kim Chanmin2ORCID,Yoo Jae Keun3,Lee Keunbaik2ORCID

Affiliation:

1. Department of Statistics and Institute of Data Science National Cheng Kung University Tainan Taiwan

2. Department of Statistics Sungkyunkwan University Seoul South Korea

3. Department of Statistics Ewha Womans University Seoul South Korea

Abstract

When analyzing multivariate longitudinal binary data, we estimate the effects on the responses of the covariates while accounting for three types of complex correlations present in the data. These include the correlations within separate responses over time, cross‐correlations between different responses at different times, and correlations between different responses at each time point. The number of parameters thus increases quadratically with the dimension of the correlation matrix, making parameter estimation difficult; the estimated correlation matrix must also meet the positive definiteness constraint. The correlation matrix may additionally be heteroscedastic; however, the matrix structure is commonly considered to be homoscedastic and constrained, such as exchangeable or autoregressive with order one. These assumptions are overly strong, resulting in skewed estimates of the covariate effects on the responses. Hence, we propose probit linear mixed models for multivariate longitudinal binary data, where the correlation matrix is estimated using hypersphere decomposition instead of the strong assumptions noted above. Simulations and real examples are used to demonstrate the proposed methods. An open source R package, BayesMGLM, is made available on GitHub at https://github.com/kuojunglee/BayesMGLM/ with full documentation to produce the results.

Funder

National Science Council

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3