Point estimation, confidence intervals, and P‐values for optimal adaptive two‐stage designs with normal endpoints

Author:

Meis Jan1ORCID,Pilz Maximilian1ORCID,Bokelmann Björn2ORCID,Herrmann Carolin2ORCID,Rauch Geraldine23ORCID,Kieser Meinhard1ORCID

Affiliation:

1. Institute of Medical Biometry University of Heidelberg Heidelberg Germany

2. Institute of Biometry and Clinical Epidemiology Charité‐ Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin Berlin Germany

3. Technische Universität Berlin Berlin Germany

Abstract

Due to the dependency structure in the sampling process, adaptive trial designs create challenges in point and interval estimation and in the calculation of P‐values. Optimal adaptive designs, which are designs where the parameters governing the adaptivity are chosen to maximize some performance criterion, suffer from the same problem. Various analysis methods which are able to handle this dependency structure have already been developed. In this work, we aim to give a comprehensive summary of these methods and show how they can be applied to the class of designs with planned adaptivity, of which optimal adaptive designs are an important member. The defining feature of these kinds of designs is that the adaptive elements are completely prespecified. This allows for explicit descriptions of the calculations involved, which makes it possible to evaluate different methods in a fast and accurate manner. We will explain how to do so, and present an extensive comparison of the performance characteristics of various estimators between an optimal adaptive design and its group‐sequential counterpart.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Reference51 articles.

1. U.S. Food and Drug Administration (FDA).Adaptive designs for clinical trials of drugs and biologics ‐ guidance for industry.2019https://www.fda.gov/regulatory‐information/search‐fda‐guidance‐documents/adaptive‐design‐clinical‐trials‐drugs‐and‐biologics‐guidance‐industry. Accessed October 1 2022.

2. Optimal planning of adaptive two‐stage designs

3. MeisJ.adestr. R package in GitHub repository.2023https://github.com/jan‐imbi/adestr

4. Estimation Following Sequential Tests

5. Exact Confidence Intervals Following a Group Sequential Test

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. adestr: Estimation in Optimal Adaptive Two-Stage Designs;CRAN: Contributed Packages;2023-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3