A bacterial symbiont in the gill of the marine scallop Argopecten irradians irradians metabolizes dimethylsulfoniopropionate

Author:

Shu Yi12,Wang Yongming12,Wei Zhongcheng1ORCID,Gao Ning12,Wang Shuyan3,Li Chun‐Yang3,Xing Qiang13,Hu Xiaoli12,Zhang Xiao‐Hua3,Zhang Yu‐Zhong3,Zhang Weipeng4ORCID,Bao Zhenmin12,Ding Wei13ORCID

Affiliation:

1. MOE Key Laboratory of Marine Genetics and Breeding Ocean University of China Qingdao China

2. Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution Ocean University of China Sanya China

3. College of Marine Life Sciences Ocean University of China Qingdao China

4. Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao China

Abstract

AbstractMicrobial lysis of dimethylsulfoniopropionate (DMSP) is a key step in marine organic sulfur cycling and has been recently demonstrated to play an important role in mediating interactions between bacteria, algae, and zooplankton. To date, microbes that have been found to lyse DMSP are largely confined to free‐living and surface‐attached bacteria. In this study, we report for the first time that a symbiont (termed “Rhodobiaceae bacterium HWgs001”) in the gill of the marine scallop Argopecten irradians irradians can lyse and metabolize DMSP. Analysis of 16S rRNA gene sequences suggested that HWgs001 accounted for up to 93% of the gill microbiota. Microscopic observations suggested that HWgs001 lived within the gill tissue. Unlike symbionts of other bivalves, HWgs001 belongs to Alphaproteobacteria rather than Gammaproteobacteria, and no genes for carbon fixation were identified in its small genome. Moreover, HWgs001 was found to possess a dddP gene, responsible for the lysis of DMSP to acrylate. The enzymatic activity of dddP was confirmed using the heterologous expression, and in situ transcription of the gene in scallop gill tissues was demonstrated using reverse‐transcription PCR. Together, these results revealed a taxonomically and functionally unique symbiont, which represents the first‐documented DMSP‐metabolizing symbiont likely to play significant roles in coastal marine ecosystems.

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3