Beyond biogeographic patterns: Processes shaping the microbial landscape in soils and sediments along the Yangtze River

Author:

Wan Wenjie12ORCID,Gadd Geoffrey M.34,Gu Ji‐Dong5,Liu Wenzhi12,Chen Peng12,Zhang Quanfa12,Yang Yuyi12ORCID

Affiliation:

1. Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China

2. Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station Chinese Academy of Sciences & Hubei Province Wuhan China

3. Geomicrobiology Group, School of Life Sciences University of Dundee Dundee Scotland UK

4. State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control China University of Petroleum Beijing China

5. Environmental Science and Engineering Group Guangdong Technion‐Israel Institute of Technology Guangdong China

Abstract

AbstractDeciphering biogeographic patterns of microorganisms is important for evaluating the maintenance of microbial diversity with respect to the ecosystem functions they drives. However, ecological processes shaping distribution patterns of microorganisms across large spatial‐scale watersheds remain largely unknown. Using Illumina sequencing and multiple statistical methods, we characterized distribution patterns and maintenance diversity of microorganisms (i.e., archaea, bacteria, and fungi) in soils and sediments along the Yangtze River. Distinct microbial distribution patterns were found between soils and sediments, and microbial community similarity significantly decreased with increasing geographical distance. Physicochemical properties showed a larger effect on microbial community composition than geospatial and climatic factors. Archaea and fungi displayed stronger species replacements and weaker environmental constraints in soils than that in sediments, but opposite for bacteria. Archaea, bacteria, and fungi in soils showed broader environmental breadths and stronger phylogenetic signals compared to those in sediments, suggesting stronger environmental adaptation. Stochasticity dominated community assemblies of archaea and fungi in soils and sediments, whereas determinism dominated bacterial community assembly. Our results have therefore highlighted distinct microbial distribution patterns and diversity maintenance mechanisms between soils and sediments, and emphasized important roles of species replacement, environmental adaptability, and ecological assembly processes on microbial landscape. Our findings are helpful in predicting loss of microbial diversity in the Yangtze River Basin, and might assist the establishment of environmental policies for protecting fragile watersheds.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3