Single‐cell Raman and functional gene analyses reveal microbial P solubilization in agriculture waste‐modified soils

Author:

Li Hongzhe1,Ding Jiazhi123,Zhu Longji1,Xu Fei123,Li Wenjing13,Yao Yanpo4,Cui Li1ORCID

Affiliation:

1. Key Lab of Urban Environment and Health Institute of Urban Environment, Chinese Academy of Sciences Xiamen China

2. College of Life Sciences Fujian Agriculture and Forestry University Fuzhou China

3. University of Chinese Academy of Sciences Beijing China

4. Agro‐Environmental Protection Institute Ministry of Agriculture and Rural Affairs Tianjin China

Abstract

AbstractApplication of agricultural waste such as rapeseed meal (RM) is regarded as a sustainable way to improve soil phosphorus (P) availability by direct nutrient supply and stimulation of native phosphate‐solubilizing microorganisms (PSMs) in soils. However, exploration of the in situ microbial P solubilizing function in soils remains a challenge. Here, by applying both phenotype‐based single‐cell Raman with D2O labeling (Raman‐D2O) and genotype‐based high‐throughput chips targeting carbon, nitrogen and P (CNP) functional genes, the effect of RM application on microbial P solubilization in three typical farmland soils was investigated. The abundances of PSMs increased in two alkaline soils after RM application identified by single‐cell Raman D2O. RM application reduced the diversity of bacterial communities and increased the abundance of a few bacteria with reported P solubilization function. Genotypic analysis indicated that RM addition generally increased the relative abundance of CNP functional genes. A correlation analysis of the abundance of active PSMs with the abundance of soil microbes or functional genes was carried out to decipher the linkage between the phenotype and genotype of PSMs. Myxococcota and C degradation genes were found to potentially contribute to the enhanced microbial P release following RM application. This work provides important new insights into the in situ function of soil PSMs. It will lead to better harnessing of agricultural waste to mobilize soil legacy P and mitigate the P crisis.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3