Chewing shrews: Examining the morphology and function of the masticatory musculature in Soricidae via diffusible iodine‐based contrast‐enhanced computed tomography

Author:

Pommerening Sebastian D. V.1ORCID,Martin Thomas1ORCID

Affiliation:

1. Department of Paleontology, Institute of Organismic Biology Rheinische Friedrich‐Wilhelms‐Universität Bonn Bonn Germany

Abstract

AbstractEssential for sustaining a high metabolic rate is the efficient fragmentation of food, which is determined by molar morphology and the movement of the jaw. The latter is related to the jaw morphology and the arrangement of the masticatory muscles. Soricid jaw apparatuses are unique among mammals, as the articulation facet on the condylar process is separated into a dorsal and a ventral part, which has often been linked to more differentiated jaw motions. Soricidae also possess a remarkably elongated angular process. However, the precise function of the unique morphology of soricid jaw apparatuses has not been fully understood yet. By digitally reconstructing the masticatory musculature via the diffusible iodine‐based contrast‐enhanced computed tomography technique, we show how the unique jaw morphology is reflected in the spatial organization as well as the inner architecture and respective fascicle orientations of the muscles. From the lines of action of the m. masseter and the m. pterygoideus internus, both muscles inserting on the lateral and medial side of the angular process, respectively, we infer that the angular process is substantial for roll and yaw rotations of the mandible. The m. masseter is subdivided into four and the m. pterygoideus internus into five subunits, each exhibiting a slightly different line of action and torque. This enables Soricidae to adjust and adapt these rotational movements according to the properties of the ingested food, allowing for more efficient fragmentation. Additionally, those guided rotational motions allow for precise occlusion despite tooth wear. The temporalis is the largest of the adductor muscles and is mainly responsible for exerting the bite force. Overall, the unique jaw bone morphology in conjunction with the complex muscle arrangement may contribute towards a more efficient energy gain and the maintenance of a high metabolic rate, which is crucial for small‐bodied mammals such as shrews.

Publisher

Wiley

Reference73 articles.

1. Chiniquodontid cynodonts: systematic and morphometric considerations

2. Der Bau der Soriciden und ihre Beziehungen zu anderen Säugetieren;Ärnbäck‐Christie‐Linde A.;Gegenbaurs Morphologisches Jahrbuch,1907

3. The morphology of the mouse masticatory musculature

4. Zur Nahrung der Hausspitzmaus, Crocidura russula (Hermann, 1780);Bever K.;Säugetierkundliche Mitteilungen,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3