Development of the cranial lateral line system of Brook Trout, Salvelinus fontinalis (Teleostei: Salmonidae): Evolutionary and ecological implications

Author:

Jones Aubree E.1ORCID,Rizzato Pedro P.2ORCID,Webb Jacqueline F.1ORCID

Affiliation:

1. Department of Biological Sciences University of Rhode Island Kingston Rhode Island USA

2. Departamento de Zoologia, Instituto de Biociências Universidade de São Paulo São Paulo São Paulo Brazil

Abstract

AbstractThe mechanosensory lateral line (LL) system of salmonid fishes has been the focus of comparative morphological studies and behavioral and physiological analyses of flow sensing capabilities, but its morphology and development have not been studied in detail in any one species. Here, we describe the post‐embryonic development of the cranial LL system in Brook Trout, Salvelinus fontinalis, using vital fluorescent staining (4‐Di‐2‐ASP), scanning electron microscopy, µCT, and clearing and staining to visualize neuromasts and the process of cranial LL canal morphogenesis. We examined the relationship between the timing of LL development, the prolonged life history of salmonids, and potential ecological implications. The LL system is composed of seven canals containing canal neuromasts (CNs) and four lines of superficial neuromasts (SNs) on the skin. CNs and SNs increase in number and size during the alevin (larval) stage. CN number stabilizes as canal morphogenesis commences, but SN number increases well into the parr (juvenile) stage. CNs become larger and more elongated than SNs, but the relative area occupied by sensory hair cells decreases during ontogeny in both types of neuromasts. Neuromast‐centered canal morphogenesis starts in alevins (yolk sac larvae), as they swim up into the water column from their gravel nests (~4 months post‐fertilization), after which yolk sac absorption is completed and exogenous feeding begins. Canal morphogenesis proceeds asynchronously within and among canal series and is not complete until ~8 months post‐fertilization (the parr stage). Three characters in the LL system and associated dermal bones were used to identify their homologs in other actinopterygians and to consider the evolution of LL canal reduction, thus demonstrating the value of salmonids for the study of LL evolution. The prolonged life history of Brook Trout and the onset of canal morphogenesis at swim‐up are predicted to have implications for neuromast function at these critical behavioral and ecological transitions.

Publisher

Wiley

Reference115 articles.

1. The anatomy and development of the lateral line system in amia calva

2. The lateral sensory canals of Polypterus bichir;Allis E. P.;Anatomischer Anzeiger,1900

3. The lateral sensory system in the Muraenidae;Allis E. P.;Internationale Monatsschrift für Anatomie und Physiologie,1903

4. On certain features of the lateral canals and cranial bones of Polyodon folium;Allis E. P.;Zoologische Jahrbucher,1903

5. The latero‐sensory canals and related bones in fishes;Allis E. P.;Internationale Monatsschrift für Anatomie und Physiologie,1904

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3