In vivo measurement of strain in the periodontal space of pig (Sus scrofa) incisors using in‐fiber Bragg sensors

Author:

Popowics Tracy E.1ORCID,Hwang Isabelle2,Lu Jason2,Nguyen Tammy2,Sample Morgan2,Sangster Anissa2,Tang Derrick1,Dennison Christopher R.3,Romanyk Dan L.4,Rafferty Katherine5,Greenlee Geoffrey5ORCID

Affiliation:

1. Department of Oral Health Sciences University of Washington Seattle Washington USA

2. Department of Oral Health Sciences, University of Washington School of Dentistry University of Washington Seattle Washington USA

3. Department of Mechanical Engineering University of Victoria Victoria BC Canada

4. Department of Mechanical Engineering University of Alberta Edmonton AB Canada

5. Department of Orthodontics University of Washington Seattle Washington USA

Abstract

AbstractThe incisor teeth in pigs, Sus scrofa, function in association with a disc‐shaped snout to explore the environment for potential food. Understanding how mechanical loading applied to the tooth deforms the periodontal ligament (PDL) is important to determining the role of periodontal mechanoreceptors during food exploration and feeding. The objective of this study was to use fiber Bragg (FBG) sensors to measure strain in vivo within the PDL space of pig incisors. The central mandibular incisors of pigs underwent spring loaded lingual tipping during FBG strain recording within the labial periodontal space. FBG sensors were placed within the periodontal space of the central mandibular incisors of ~2–3‐month‐old farm pigs. The magnitude and orientation of spring loads are expected to mimic incisor contact with food. During incisor tipping with load calibrated springs, FBG strains in vitro (N = 6) and in vivo (N = 6) recorded at comparable load levels overlapped in range (−10–20 με). Linear regressions between peak FBG strains, that is, the highest recorded strain value, and baseline strains, that is, strain without applied spring load, were significant across all in vivo experiments (peak strain at 200 g vs. baseline, p = .04; peak strain at 2000 g vs. baseline p = .03; peak strain at 2000 g vs. 200 g, p = .004). These linear relationships indicate that on a per experiment basis, the maximum measured strain at different spring loads showed predictable differences. A Friedman test of the absolute value of peak strain confirmed the significant increase in strain between baseline, 200 g, and 2000 g spring activation (p = .02). Mainly compressive strains were recorded in the labial PDL space and increases in spring load applied in vivo generated increases in FBG strain measurements. These results demonstrate the capacity for FBG sensors to be used in vivo to assess transmission of occlusal loads through the periodontium. PDL strain is associated with mechanoreceptor stimulation and is expected to affect the functional morphology of the incisors. The overall low levels of strain observed may correspond with the robust functional morphology of pig incisors and the tendency for pigs to encounter diverse foods and substrates during food exploration.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3