Correlated evolution of beak and braincase morphology is present only in select bird clades

Author:

Xu Xiaoni1ORCID,Natale Rossy2ORCID

Affiliation:

1. Department of Organismal Biology and Anatomy University of Chicago Chicago Illinois USA

2. Cornell Lab or Ornithology Cornell University Ithaca New York USA

Abstract

AbstractComplex morphological structures, such as skulls or limbs, are often composed of multiple morphological components (e.g., bones, sets of bones) that may evolve in a covaried manner with one another. Previous research has reached differing conclusions on the number of semi‐independent units, or modules, that exist in the evolution of structures and on the strength of the covariation, or integration, between these hypothesized modules. We focus on the avian skull as an example of a complex morphological structure for which highly variable conclusions have been reached in the numerous studies analyzing support for a range of simple to complex modularity hypotheses. We hypothesized that past discrepancies may stem from both the differing densities of data used to analyze support for modularity hypotheses and the differing taxonomic levels of study. To test these hypotheses, we applied a comparative method to 3D geometric morphometric data collected from the skulls of a diverse order of birds (the Charadriiformes) to test support for 11 distinct hypotheses of modular skull evolution. Across all Charadriiformes, our analyses suggested that charadriiform skull evolution has been characterized by the semi‐independent, but still correlated, evolution of the beak from the rest of the skull. When we adjusted the density of our morphometric data, this result held, but the strength of the signal varied substantially. Additionally, when we analyzed subgroups within the order in isolation, we found support for distinct hypotheses between subgroups. Taken together, these results suggest that differences in the methodology of past work (i.e., statistical method and data density) as well as clade‐specific dynamics may be the reasons past studies have reached varying conclusions.

Funder

University of Chicago

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3