Likelihood‐based inference for linear mixed‐effects models using the generalized hyperbolic distribution

Author:

Lachos Victor H.1ORCID,Galea Manuel2,Zeller Camila3ORCID,Prates Marcos O.4ORCID

Affiliation:

1. Department of Statistics University of Connecticut Storrs Connecticut USA

2. Departamento de Estadística Pontificia Universidad Católica de Chile Santiago Chile

3. Departamento de Estatística Universidade Federal de Juiz de Fora Juiz de Fora Brazil

4. Departamento de Estatística Universidade Federal de Minas Gerais Belo Horizonte Brazil

Abstract

In this paper, we develop statistical methodology for the analysis of data under nonnormal distributions, in the context of mixed effects models. Although the multivariate normal distribution is useful in many cases, it is not appropriate, for instance, when the data come from skewed and/or heavy‐tailed distributions. To analyse data with these characteristics, in this paper, we extend the standard linear mixed effects model, considering the family of generalized hyperbolic distributions. We propose methods for statistical inference based on the likelihood function, and due to its complexity, the EM algorithm is used to find the maximum likelihood estimates with the standard errors and the exact likelihood value as a by‐product. We use simulations to investigate the asymptotic properties of the expectation‐maximization algorithm (EM) estimates and prediction accuracy. A real example is analysed, illustrating the usefulness of the proposed methods.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3