Nine‐year organic fertilization enhances poorly crystalline iron hydroxide formation and phosphorus availability in a temperate rice–wheat cropping system

Author:

Qin Jiali1,Han Xinci1,Jia Zhixin1,Li Yunyan1,Zhang Dandan1,Li Lina1ORCID,Xie Junyu1,Li Li1,Li Tingliang1,Huang Xiaolei12ORCID,Ling Ning2,Yu Guanghui3

Affiliation:

1. College of Resources and Environment Shanxi Agricultural University Taigu Shanxi China

2. Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waster Resource Utilization Nanjing Agricultural University Nanjing China

3. Institute of Surface‐Earth System Science Tianjin University Tianjin China

Abstract

AbstractPhosphorus (P) is typically associated with iron (Fe) hydroxides in paddy soils. Our study investigated the impact of different fertilization treatments on the availability of P regulated by Fe redox transformation in a rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping system in the mid‐low reaches of the Yangtze River. Five fertilization treatments were examined: control (CK), chemical fertilizer (CF), 35% CF (P) plus pig manure compost (CFM), 100% CF (P) plus straw (CFS), and 35% CF (P) plus pig manure compost and straw (CFMS). Nine‐year rice–wheat rotations increased the oxalate‐extractable poorly crystalline Fe hydroxides (i.e., Feo) by 33%–87% compared with the initial soil, while fertilization further accelerated this process. Compost application increased the proportion of labile P by 75%–108% and decreased the proportion of non‐labile P by 14%–22% compared with the single chemical fertilization treatment. Furthermore, organic fertilization increased the mass proportions of macroaggregates and macroaggregate‐associated labile P. The Feo was positively correlated with the content of labile P but negatively correlated with the proportion of non‐labile P. Moreover, the reductive dissolution of Fe hydroxides was accompanied by the transformation of P from NaOH‐extractable to NaHCO3‐ and H2O‐extractable phases. These results indicate that seasonal alternation of drying and wetting can progressively drive the redox transformation of Fe hydroxides and promote the formation of Feo, thereby affecting the availability of P. Therefore, we suggested that P fertilizer should be reduced in the rice season due to the reduction of Fe hydroxides, particularly in the compost‐amended soils in the temperate rice–wheat cropping system.

Publisher

Wiley

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3