Particle size distribution of growing media constituents using dynamic image analysis: Parametrization and comparison to sieving

Author:

Durand Stan1ORCID,Jackson Brian E.2,Fonteno William C.2,Michel Jean‐Charles1

Affiliation:

1. EPHOR L'Institut Agro Angers France

2. Department of Horticultural Sciences North Carolina State University Raleigh North Carolina USA

Abstract

AbstractGrowing media constituents have heterogeneous particle size and shape, and their physical properties are partly related to them. Particle size distribution is usually analyzed through sieving process, segregating the particles by their width. However, sieving techniques are best describing more granular shapes and are not as reliable for materials exhibiting large varieties of shapes, like growing media constituents. A dynamic image analysis has been conducted for a multidimensional characterization of particle size distribution of several growing media constituents (white and black peats, pine bark, coir, wood fiber, and perlite), from particles that were segregated and dispersed in water. Diameters describing individual particle width and length were analyzed, then compared to particle size distribution obtained by dry and wet sieving methods. This work suggests the relevance of two parameters, FeretMAXand ChordMINdiameters for assessing particle length and width, respectively. They largely varied among the growing media constituents, confirming their non‐spherical (i.e., elongated) shapes, demonstrating the advantages of using dynamic image analysis tools over traditional sieving methods. Furthermore, large differences in particle size distribution were also observed between dynamic image analysis and sieving procedures, with a finer distribution for dynamic image analysis. The discrepancies observed between methodologies were discussed (particle segregation, distribution weighing, etc.), while describing in details methodological limitations of dynamic image analysis.

Funder

European Regional Development Fund

Publisher

Wiley

Subject

Soil Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3