Evaluating methodological parameters to quantify particle size of organic soil material with laser diffraction

Author:

Colopietro Daniel J.1ORCID,Pachon Julio1ORCID,Bacon Allan1ORCID,Inglett Patrick1ORCID,Reynolds Laura1ORCID,Rohal Christine1ORCID

Affiliation:

1. Soil, Water, and Ecosystem Sciences Department University of Florida Gainesville Florida USA

Abstract

AbstractThe recognition that texture is a “master soil property” points toward the need for actual quantification of particle size in organic soil material. Using a multi‐wave particle size analyzer, fibric and sapric soil samples were circulated in deionized water through a closed aqueous loop at 9.6 L min−1, and the following methodological parameters were investigated: pre‐treatment, circulation time, and refractive index. Our results show that pre‐treatment for organic soil samples is dependent upon the degree of decomposition; the intact and dispersed PSDs for fibrous samples were similiar, whereas the PSDs for sapric samples showed a shift from 500–2000 (intact) μm to 5–100 (dispersed) μm. Circulation time was investigated using mean particle diameter and specific surface area. We demonstrated that as circulation time increased, the mean particle diameter decreased and the specific surface area increased out to 30 min as mechanical dispersion and/or fragmentation of organic particles occurred. However, circulation time after 5 min is not significantly different in terms of mean particle diameter. To investigate refractive index, 12 optical models were created. When determined across all intact samples, uncertainty was low within individual bins, with a maximum value of 0.07 ± 0.04% v/v. For dispersed samples, uncertainty increased within the silt sized region and had a maximum value of 0.17 ± 0.07% v/v. This study demonstrates that the particle diameter of organic soil material can be measured by LD with comparable certainty as that of mineral soil material using the methodological approach used in this study.

Publisher

Wiley

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3