Short‐term dynamics of drainage density based on a combination of channel flow state surveys and water level measurements

Author:

Bujak‐Ozga Izabela12ORCID,van Meerveld H.J. (Ilja)3ORCID,Rinaldo Andrea14ORCID,von Freyberg Jana12ORCID

Affiliation:

1. Laboratory of Ecohydrology ENAC IIE ECHO École Polytechinque Fédérale de Lausanne (EPFL) Lausanne Switzerland

2. Mountain Hydrology and Mass Movements Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) Birmensdorf Switzerland

3. Department of Geography University of Zurich Zurich Switzerland

4. Department of Civil, Environmental and Architectural Engineering (DICEA) Università di Padova Padova Italy

Abstract

AbstractHeadwater streams often experience intermittent flow. Consequently, the flowing drainage network expands and contracts and the flowing drainage density (DD) varies over time. Monitoring the DD dynamics is essential to understand the processes controlling it. However, our knowledge of the event‐scale DD dynamics is limited because high spatial and temporal resolution data on the DD remain sparse. Therefore, our team monitored the DD dynamics and hydrologic variables in two 5‐ha headwater catchments in the Swiss pre‐Alps in the summer of 2021, through mapping surveys of the flow state and a wireless streamwater level sensor network. We combined the two data sources to calculate the DD at the event‐time scale. Our so‐called CEASE method assumes that flow in a channel reach occurs above a set of water level thresholds, and it determined the DDs with accuracies >94%. DD responses to events differed for the two catchments, despite their proximity and similar size. DD ranged from 2.7 to 32.2 km km−2 in the flatter catchment (average slope: 15°). For this catchment, the discharge‐DD relationship became steeper when DD exceeded 20 km km−2 and DD increased substantially with relatively small increases in discharge. For rainfall events during dry conditions, the discharge‐DD relationship showed counterclockwise hysteresis, likely due to initially high groundwater discharge from the area near the catchment outlet; once rainfall stopped, DD remained high during the streamflow recession due to rising groundwater levels throughout the catchment. For events during wet conditions, the discharge and DD responded synchronously. In the steeper catchment (average slope: 24°), the DD varied only from 7.8 to 14.6 km km−2 and there was no hysteresis or threshold behaviour in the discharge‐DD relationship, likely because multiple groundwater springs maintained streamflow throughout the network during the monitoring period. These results highlight the high variability in DD and its dynamics across small headwater catchments.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3