Uncertainty quantization of meteorological input and model parameters for hydrological modelling using a Bayesian‐based integrated approach

Author:

Yan Xueman12,Song Jinxi12ORCID,An Yongkai3,Lu Wenxi4

Affiliation:

1. College of Urban and Environmental Sciences Northwest University Xi'an China

2. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences Northwest University Xi'an China

3. School of Water and Environment Chang'an University Xi'an China

4. College of New Energy and Environment Jilin University Changchun China

Abstract

AbstractThe traditional treatment of uncertainty in hydrological modelling primarily attributes it to model parameters, but rarely systematically considers meteorological input errors, especially in quantifying the impact of meteorological input errors on parameter uncertainty. This study developed a Bayesian‐based integrated approach to quantitatively investigate uncertainties in meteorological inputs (precipitation and temperature) and model parameters as well as the variation in parameter uncertainty due to meteorological input errors. Additionally, we analysed the propagation from these uncertainties to runoff response in snowmelt and non‐snowmelt periods. The applicability and advantages of this approach were presented by applying of the Soil and Water Assessment Tool to the Shitoukoumen Reservoir Catchment. Differential Evolution Adaptive Metropolis‐Markov Chain Monte Carlo was applied for the straightforward Bayesian inference the uncertainties of meteorological inputs and model parameters. On this basis, multilevel factorial analysis technology was used to quantitatively investigate the specific impact of the model parameters' individual and interactive effects due to meteorological input errors. Finally, the impact of meteorological input errors and model parameter uncertainty on the model performance were analysed and quantified systematically. The results showed that the meteorological input errors could affect the random characteristics of multiple model parameters. Moreover, meteorological input errors could further affect the model parameters' effects on annual average runoff. Overall, the above results have significant implications in enhancing hydrological model to simulate/predict runoff and understanding hydrological processes during different periods.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3