Added value of an atmospheric circulation pattern‐based statistical downscaling approach for daily precipitation distributions in complex terrain

Author:

Böker Brian1ORCID,Laux Patrick12ORCID,Olschewski Patrick1,Kunstmann Harald12

Affiliation:

1. Institute of Meteorology and Climate Research (IMK‐IFU) Karlsruhe Institute of Technology Garmisch‐Partenkirchen Germany

2. Institute of Geography University of Augsburg Augsburg Germany

Abstract

AbstractReliable prediction of heavy precipitation events causing floods in a world of changing climate is crucial for the development of appropriate adaption strategies. Many attempts to provide such predictions have already been conducted but there is still much potential for improvement left. This is particularly true for statistical downscaling of heavy precipitation due to changes present in the corresponding atmospheric drivers. In this study, a circulation pattern (CP) conditional downscaling to the station level is proposed which considers occurring frequency changes of CPs. Following a strict circulation‐to‐environment approach we use atmospheric predictors to derive CPs. Subsequently, precipitation observations are used to derive CP conditional cumulative distribution functions (CDFs) of daily precipitation. Raw precipitation time series are sampled from these CDFs. Bias correction is applied to the sampled time series with quantile mapping (QM) and parametric transfer functions (PTFs) as methods being tested. The added value of this CP conditional downscaling approach is evaluated against the corresponding common non‐CP conditional approach. The performance evaluation is conducted by using Kling–Gupta Efficiency (KGE), root mean squared error (RMSE), and mean absolute error (MAE) metrics. In both cases the applied bias correction is identical. Potential added value can therefore only be attributed to the CP conditioning. It can be shown that the proposed CP conditional downscaling approach is capable of yielding more reliable and accurate downscaled daily precipitation time series in comparison to a non‐CP conditional approach. This can be seen in particular for the extreme parts of the distribution. Above the 95th percentile, an average performance gain of +0.24 and a maximum gain of +0.6 in terms of KGE is observed. These findings support the assumption of conserving and utilizing atmospheric information through CPs can be beneficial for more reliable statistical precipitation downscaling. Due to the availability of these atmospheric predictors in climate model output, the presented method is potentially suitable for downscaling precipitation projections.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3