Fabrication of in situ polymerized polyaniline‐based functional nanofibrous structures for flexible electromechanical devices

Author:

Khedewy Amira T.1ORCID,Abd El‐Baky Marwa A.23ORCID,Hassan Mohamed A.1,Shaker A.1ORCID

Affiliation:

1. Mechanical Design and Production Engineering Department Zagazig University Zagazig Egypt

2. Industrial Engineering Department, College of Engineering King Khalid University Abha Saudi Arabia

3. Center for Engineering and Technology Innovations King Khalid University Abha Saudi Arabia

Abstract

AbstractRecently, flexible electromechanical devices (EMDs) emerged as alternatives to rigid electronics, promoting polymeric materials over traditional semiconductors. This study develops EMDs using conductive nanofibrous membranes of thermoplastic polyurethane (TPU), polyaniline (PANI), and multi‐walled carbon nanotubes (MWCNTs) in various structures. The fabrication technique included the combination of electrospinning and in situ polymerization to create random and aligned conductive membranes. Morphological, mechanical, thermomechanical, and electrical characterizations were conducted to assess their potential in EMDs applications. Mechanical testing revealed that, in comparison to aligned pure TPU mats, aligned TPU/PANI and TPU/MWCNTs/PANI membranes exhibited maximum strains of 26% and 19%, respectively. Meanwhile, randomly oriented mats, TPU/PANI and TPU/MWCNTs/PANI demonstrated maximum strains of 18% and 27%, respectively. Moreover, incorporating PANI and/or MWCNTs increased the Young's modulus. Thermogravimetric analysis showed thermal stability up to 250°C for all mats, with TPU/PANI mats demonstrating superior stability. Dynamic mechanical analysis revealed that PANI incorporation increased the storage modulus from 119 and 180 MPa to 2012 and 1367 MPa for aligned and random mats, respectively, compared with pure TPU mats. The combination of MWCNTs and PANI yielded moduli of 1501 and 1096 MPa, respectively. All conductive mats exhibited symmetric ohmic behavior, with conductivities varying based on orientation and composition. Specifically, TPU/PANI and TPU/MWCNTs/PANI mats exhibited conductivities of 0.83 and 1.78 S/cm for aligned mats, and 0.35 and 0.67 S/cm for random mats, respectively. Pure TPU, on the other hand, displayed a conductivity of 1.8 × 10−10 S/cm, indicating a significantly lower conductivity compared with the other mats.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3