Recent advances in material chemistry for zinc enabled redox flow batteries

Author:

Zhao Qing‐Yuan1,Yin Guang‐Yuan1,Liu Yi‐Feng2,Tang Rui‐Ren2,Wu Xiong‐Wei1,Zeng Xian‐Xiang1

Affiliation:

1. School of Chemistry and Materials Science Hunan Agricultural University Changsha China

2. College of Chemistry and Chemical Engineering Central South University Changsha China

Abstract

AbstractThe pursuit of green and sustainable energy is a long‐term goal for modern society and people's life. Particularly under the context of carbon neutralization, decarbonization has become a consensus and propels the turning of research enthusiasm to explore new materials and chemistries for energy conversion and storage at a low expenditure. Zinc (Zn) enabled redox flow batteries (RFBs) are competitive candidates to fulfill the requirements of large‐scale energy storage at the power generation side and customer end. Considering the explosive growth, this review summarizes recent advances in material chemistry for zinc‐based RFBs, covering the cathodic redox pairs of metal ions, chalcogens, halogens, and organic molecules. After a brief introduction of common issues for Zn2+/Zn conversion reaction at the anode side, the focus is devoted to expounding challenges of redox species and possible problem‐solving strategies at the cathode side. Besides, the auxiliary components of separator and current collector are also discussed for achieving optimal RFBs' performance. At last, the conclusion and outlook of future endeavor for Zn‐based RFBs implementation are put forward.

Funder

Education Department of Hunan Province

Hunan Provincial Science and Technology Department

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3