Recent advances and research progress on the role of carbon‐based biomass in ultra‐capacitors: A systematic review

Author:

Balasubramanian Dhinesh1ORCID,Varadharajan Hariharan12,Papla Venugopal Inbanaathan1ORCID,Varuvel Edwin Geo34ORCID

Affiliation:

1. Department of Mechanical Engineering Mepco Schlenk Engineering College Sivakasi India

2. Department of Mechanical Engineering Dhanalakshmi College of Engineering Chennai India

3. Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences Istinye University Istanbul Turkey

4. Department of Automobile Engineering, Faculty of Engineering and Technology SRM Institute of Science and Technology Chennai India

Abstract

AbstractBiomass‐derived carbon material has drawn significant attention recently due to its wide availability, environmentally free, and effective performance of the resulting porous carbons for supercapacitor (SC) applications. Carbon electrode material derived from biomass is used for energy storage (ES) because it has distinct qualities in porosity, a large specific surface area, and excellent conductivity. Furthermore, these materials' homogeneous, flawless biological structures can be used as models to create electrode materials with accurate geometries. The ES devices, known as SCs, also known as ultra‐capacitors, serve as a link between a capacitor and a battery. Due to their charge storage, SCs can produce a much higher density than batteries. Several factors, including the electrode's potential window, the electrode materials characteristics, and the electrolyte choice, have a major effect on SC performance. Therefore, all efforts have been made to develop SC electrode materials. This paper explains the different types of SCs and how they work. The various available biomass resources, as well as the methods for producing them, are outlined. In addition, the different types of electrode materials, activation methods, heteroatom functionalization, and electrolyte types are all thoroughly examined. The application and research advancement of biomass‐derived carbon used in SCs over the past 3 years are highlighted. Furthermore, this research outlines the benefits of SCs for the environment and the economy, as well as present challenges and future recommendations for advancing biomass‐derived carbon applications. This article aims to give an in‐depth knowledge of carbon‐based biomass materials that are used in SCs.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3