XSIM: A structural similarity index measure optimized for MRI QSM

Author:

Milovic Carlos1ORCID,Tejos Cristian234,Silva Javier23ORCID,Shmueli Karin5ORCID,Irarrazaval Pablo2346ORCID

Affiliation:

1. School of Electrical Engineering Pontificia Universidad Catolica de Valparaiso Valparaiso Chile

2. Department of Electrical Engineering Pontificia Universidad Catolica de Chile Santiago Chile

3. Biomedical Imaging Center Pontificia Universidad Catolica de Chile Santiago Chile

4. Millennium Institute for Intelligent Healthcare Engineering (iHEALTH) Santiago Chile

5. Department of Medical Physics and Biomedical Engineering University College London London UK

6. Institute for Biological and Medical Engineering Pontificia Universidad Catolica de Chile Santiago Chile

Abstract

AbstractPurposeThe structural similarity index measure (SSIM) has become a popular quality metric to evaluate QSM in a way that is closer to human perception than RMS error (RMSE). However, SSIM may overpenalize errors in diamagnetic tissues and underpenalize them in paramagnetic tissues, resulting in biasing. In addition, extreme artifacts may compress the dynamic range, resulting in unrealistically high SSIM scores (hacking). To overcome biasing and hacking, we propose XSIM: SSIM implemented in the native QSM range, and with internal parameters optimized for QSM.MethodsWe used forward simulations from a COSMOS ground‐truth brain susceptibility map included in the 2016 QSM Reconstruction Challenge to investigate the effect of QSM reconstruction errors on the SSIM, XSIM, and RMSE metrics. We also used these metrics to optimize QSM reconstructions of the in vivo challenge data set. We repeated this experiment with the QSM abdominal phantom. To validate the use of XSIM instead of SSIM for QSM quality assessment across a range of different reconstruction techniques/algorithms, we analyzed the reconstructions submitted to the 2019 QSM Reconstruction Challenge 2.0.ResultsOur experiments confirmed the biasing and hacking effects on the SSIM metric applied to QSM. The XSIM metric was robust to those effects, penalizing the presence of streaking artifacts and reconstruction errors. Using XSIM to optimize QSM reconstruction regularization weights returned less overregularization than SSIM and RMSE.ConclusionXSIM is recommended over traditional SSIM to evaluate QSM reconstructions against a known ground truth, as it avoids biasing and hacking effects and provides a larger dynamic range of scores.

Funder

Vicerrectoría de Investigación, Creación e Innovación

Cancer Research UK

Fondo Nacional de Desarrollo Científico y Tecnológico

European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3