Characterization of the evolution of runoff‐sediment relationship in Min River based on coupling coordination theory

Author:

Wang Hongxiang1,Wang Wenping1,Hu Jianwen1,Sang Ye1,Guo Wenxian1

Affiliation:

1. School of Water Conservancy North China University of Water Resources and Electric Power Zhengzhou China

Abstract

AbstractGlobal climate change and human activities have profoundly affected the hydrological processes in the basin. The study of the characteristics of runoff and sediment variations in the basin and their driving factors is of great significance in promoting the efficient use of water resources and high‐quality development in the basin. The determination of the abrupt change point of the runoff‐sediment relationship is the key to delineate the base period, and is important to assess the contribution of climate change and human activities to the change of the runoff‐sediment relationship. Therefore, this study constructs a binary coupled coordination model of runoff and sediment load to describe the coupled runoff‐sediment coordination relationship, and uses the Pettitt method and the double cumulative curve method to test for mutations. The effects of climate change and human activities on changes in runoff and sediment load were assessed using the Budyko framework‐based elasticity factor method and the cumulative slope rate of change method. The results show that the annual runoff and annual sediment load in the Min River basin show a decreasing trend between 1970 and 2019, with monthly sediment load changing more significantly than monthly runoff. Annual runoff and annual sediment load were significantly coherent throughout the study period, and there were significant resonant cycles of positive phase on 2‐, 3‐, 5‐ and 6‐year time scales. The coupling coordination degree of runoff and sediment load is generally at a coordinated developmental stage and is moving from low to high levels of coordination. Relative to the base period, changes in runoff and sediment load during the change period are mainly attributed to human activities. The contribution of human activities to the change in runoff ranged from 78.92% to 66.71%, and the contribution to the change in sediment load reached 93.40% to 94.15%. In contrast, precipitation in climate change has a greater impact on changes in runoff and sediment load than potential evapotranspiration. Land use changes and reservoir construction in the Min River basin have both contributed positively to the reduction of runoff and sediment load. The results of the study will help us to gain a deeper understanding of the processes and driving mechanisms of the runoff‐sediment relationship in the Min River basin, and provide a scientific basis for water resources management and sustainable development in the basin.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Environmental Science,Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3