A regional attentive empirical orthogonal function analysis: An application to North Atlantic Oscillation

Author:

Li Dongshuang12ORCID,Pan Liming3,Wang Jian4,Shi Chunhua5,Yu Zhaoyuan24,Yuan Linwang24

Affiliation:

1. School of Marine Science and Engineering Nanjing Normal University Nanjing China

2. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application Nanjing Normal University Nanjing China

3. School of Cyber Science and Technology University of Science and Technology of China Hefei China

4. Key Laboratory of Virtual Geographic Environment Nanjing Normal University Nanjing China

5. School of Atmospheric Sciences Nanjing University of Information Science and Technology Nanjing China

Abstract

AbstractEmpirical orthogonal function (EOF) analysis is widely adopted for identifying spatial patterns in regular latitude‐longitude gridded geographical data. However, a standard EOF analysis could underestimate variances from low latitudes due to the increasing grid cell areas when moving toward the equator. A broadly adopted compensating approach is the area‐weighted EOF, where the grid data are multiplied by a factor proportional to the grid area, thereby forcing each datum to represent identical areas. In this article, we revisit the area‐weighting scheme and discuss its potential drawbacks. In particular, we show that along with compensating the unequal areas, another unaddressed issue is which region of the data is more relevant to our focused problem. We propose a regional attentive EOF (RA‐EOF) method, which resolves area‐compensation and region selection simultaneously. We conduct case studies of the North Atlantic Oscillation (NAO) analysis and perform RA‐EOF to the sea level pressure variability in the North Atlantic sector. Experiments show that our method evidently detects the NAO pattern in the leading mode of sea level pressure variability and suggests the southwestward movement of the southern action centre of NAO during the summers. Our findings clarify the ambiguity about the summer NAO in previous studies. The proposed methodology provides a potent instrument for discerning the spatial distribution and analysing the temporal variability of atmospheric teleconnections and oscillations, particularly in cases characterized by weak signal strength.

Funder

National Natural Science Foundation of China

Postdoctoral Science Foundation of Jiangsu Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3