A review of artificial intelligence quality in forecasting asset prices

Author:

Barboza Flavio1ORCID,Nunes Silva Geraldo2ORCID,Augusto Fiorucci José3ORCID

Affiliation:

1. School of Business and Management Federal University of Uberlândia (UFU) Uberlândia MG 38400–902 Brazil

2. Mathematics Department, Institute of Biosciences, Humanities and Exact Sciences São Paulo State University (UNESP) São José do Rio Preto SP 15054–000 Brazil

3. Department of Statistics University of Brasilia (UnB), Campus Darcy Ribeiro Brasília DF 70910‐900 Brazil

Abstract

AbstractResearchers and practitioners globally, from a range of perspectives, acknowledge the difficulty in determining the value of a financial asset. This subject is of utmost importance due to the numerous participants involved and its impact on enhancing market structure, function, and efficiency. This paper conducts a comprehensive review of the academic literature to provide insights into the reasoning behind certain conventions adopted in financial value estimation, including the implementation of preprocessing techniques, the selection of relevant inputs, and the assessment of the performance of computational models in predicting asset prices over time. Our analysis, based on 109 studies sourced from 10 databases, reveals that daily forecasts have achieved average error rates of less than 1.5%, while monthly data only attain this level in optimal circumstances. We also discuss the utilization of tools and the integration of hybrid models. Finally, we highlight compelling gaps in the literature that provide avenues for further research.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

Subject

Management Science and Operations Research,Statistics, Probability and Uncertainty,Strategy and Management,Computer Science Applications,Modeling and Simulation,Economics and Econometrics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3