Consistent treatment of shear failure in embedded discrete fracture models using XFVM

Author:

Conti Giulia1ORCID,Deb Rajdeep1ORCID,Matthäi Stephan K.2ORCID,Jenny Patrick1ORCID

Affiliation:

1. Institute of Fluid Dynamics ETH Zürich Switzerland

2. Department of Infrastructure Engineering The University of Melbourne Melbourne Australia

Abstract

AbstractUnderstanding deformations and fluid flow in fractured rocks is of central importance for many subsurface flow applications. Thus, numerical frameworks are needed that capture the coupled mechanical and hydraulic behaviour, including scenarios with complex fracture networks. This paper employs the extended finite volume method to represent fracture manifolds in a poroelastic matrix domain and to compute shear and tensile displacements of fracture segments. However, using embedded fractures with non‐conforming grids can lead to severe convergence issues while computing shear slip and tensile opening of intersecting and parallel fractures, particularly if they have similar slopes. Our proposed solution of this problem is to slightly deform the fracture geometry by merging critical segments. We discuss and show examples of which attributes the merged segment has to adopt to ensure the correct slip behaviour at an intersection. Thereby it is crucial that the flow topology remains unaltered. Analysing failures of kinked fractures and fracture intersections show the flexibility of the devised algorithm. Moreover, it is demonstrated that deformation and opening patterns of a natural network with more than 200 fractures are qualitatively predicted very well. This method is a simple solution to treat multiple fracture segments in a grid cell, hence it can be used for any model embedding fractures in non‐conforming grids.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Subject

Mechanics of Materials,Geotechnical Engineering and Engineering Geology,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3