High Activity Ethylene Oligomerization Using Asymmetric Alkyl P‐Substituted Bis(phosphanyl)amine Ni(II) complexes

Author:

Shao Huijuan1ORCID,Zhang Yu1,Yang Xiaodie1ORCID,Tan Mengfei1,Wang Yating1ORCID,Jiang Tao1ORCID

Affiliation:

1. College of Chemical Engineering and Material Science Tianjin University of Science and Technology Tianjin China

Abstract

ABSTRACTA series of novel asymmetric alkyl P‐substituted bis(phosphanyl)amine (PNP) Ph2PN (cyclopentyl) PR1R2‐type L1–L5 ligands and these corresponding Ni(II) precatalysts C1–C5 were synthesized and characterized. The structures of these complexes were confirmed by using 1H‐, 31P‐, 13C‐NMR, FT‐IR, and elemental analysis. Using ethylaluminum dichloride (EADC) as a cocatalyst, nickel complexes exhibited high activity in elective ethylene oligomerization, with the main products being dimers and a small number of trimers. Under optimized conditions of 60°C and 1.0 MPa ethylene pressure, C4, bearing a diisopropylphosphoryl group, exhibited highest catalytic activity of 1342.9 kg·g Ni−1·h−1 with 85.2% C4 and 14.8% C6 products selectivity, while C2, bearing a diethylphosphonyl group, showed catalytic activity of 596.4 kg·g Ni−1·h−1 with 88.2% C4 and 11.8% C6 product selectivity. Single crystal analysis offered a more comprehensive insight into the subtle effects of alkyl P‐substituted in the scaffold of C2 and C4 ligands on catalytic activity. Density functional theory (DFT) calculations indicated that lower energy of the LUMO in the C4A intermediate enhances the activity of ethylene oligomerization. It provides a new method for purposefully designing ligands for ethylene oligomerization with high catalytic activity.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3