A real space convolution‐based approximate algorithm for phase field model involving elastic strain energy

Author:

Gao YaQian12ORCID,Chi XueBin1,Yin JiXian12,Zhang Jian1

Affiliation:

1. Computer Network Information Center Chinese Academy of Sciences Beijing People's Republic of China

2. University of Chinese Academy of Sciences Beijing People's Republic of China

Abstract

AbstractPhase field models have been employed extensively in the study of microstructure evolution in materials. Elasticity plays an important role in solid‐state phase transformation processes, and it is usually introduced into phase field models in terms of the elastic strain energy by applying Khachaturyan–Shatalov microelasticity theory. Conventionally, this energy is derived in the reciprocal space and results in full‐space Fourier transformation in practice, which becomes bottle‐neck in large‐scale and massively‐parallel applications. In this article, we propose an error‐controlled approximation algorithm for scalable and efficient calculation of the elastic strain energy in phase field models. We first derive a real‐space convolutional representation of the elastic strain energy by representing the equilibrium displacements in the Khachaturyan–Shatalov microelasticity theory using Green's function. Then we propose an error‐controlled truncation criterion to approximate the corresponding terms in the phase field model. Finally, a carefully designed parallel algorithm is presented to carry out large‐scale simulations. The accuracy and efficiency of the proposed algorithm are demonstrated by real‐world large‐scale phase field simulations.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3