Error estimates of exponential wave integrators for the Dirac equation in the massless and nonrelativistic regime

Author:

Ma Ying1,Chen Lizhen2ORCID

Affiliation:

1. Department of Mathematics, School of Mathematics, Statistics and Mechanics Beijing University of Technology Beijing China

2. Algorithms Division Beijing Computational Science Research Center Beijing China

Abstract

AbstractWe present exponential wave integrator Fourier pseudospectral (EWI‐FP) methods and establish their error estimates of the fully discrete schemes for the Dirac equation in the massless and nonrelativistic regime. This regime involves a small dimensionless parameter where , and is inversely proportional to the speed of light. The solution exhibits highly oscillatory behavior in time and rapid wave propagation in space in this regime. Specifically, the time oscillations have a wavelength of , while the spatial oscillations have a wavelength of , with a wave speed of . We employ (symmetric) exponential wave integrators for temporal derivatives and Fourier spectral discretization for spatial derivatives. We rigorously derive the error bounds which explicitly depend on the mesh size , the time step and the small dimensionless parameter . The error estimates for the EWI‐FP methods demonstrate that their meshing strategy requirement (‐scalability) necessitates setting and when . Finally, some numerical examples are provided to validate the error bounds.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3