Leveraging recommendation systems for improving caching emerging short video in content delivery network
Author:
Affiliation:
1. Information Center Jilin Institute of Chemical Technology Jilin China
Publisher
Wiley
Subject
Electrical and Electronic Engineering
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.4117
Reference32 articles.
1. CMBPR: Category-Aided Multi-Channel Bayesian Personalized Ranking for Short Video Recommendation
2. ZhangY LiP ZhangZ et al. Challenges and chances for the emerging short video network. Paper presented at: Proceedings of the IEEE INFOCOM 2019‐IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) Paris France;2019:1025‐1026.
3. DeepCache: a deep learning based framework for content caching;Narayanan A;ACM SIGCOMM NetAI,2018
4. RomanoS ElAaragH. A quantitative study of recency and frequency based web cache replacement strategies. Paper presented at: Proceedings of the ACM Communications and Networking Simulation Symposium Ottawa Canada:2008.
5. Placing dynamic content in caches with small population;Leconte M;IEEE INFOCOM,2016
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Characteristics, hotspots, and prospects of short video research: A review of papers published in China from 2012 to 2022;Heliyon;2024-02
2. Research on Strategies of Digital Media in Shaping and Communicating City Image--Text Mining and Sentiment Analysis Based on Image Communication;Applied Mathematics and Nonlinear Sciences;2024-01-01
3. Research on the Optimized Creation and Talent Cultivation Mode of Online Micro Short Drama under the Background of Industry-Education Integration;Applied Mathematics and Nonlinear Sciences;2024-01-01
4. Research on Personalized Recommendation System of New Media Short Video Based on Local Random Walk;2023 International Conference on Power, Electrical Engineering, Electronics and Control (PEEEC);2023-09-25
5. Recommendation-Driven Multi-Cell Cooperative Caching: A Multi-Agent Reinforcement Learning Approach;IEEE Transactions on Mobile Computing;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3