Improving the short‐range forecast of storm surges in the southwestern Atlantic continental shelf using 4DEnSRF data assimilation

Author:

Dinápoli Matías G.123ORCID,Ruiz Juan J.123,Simionato Claudia G.123,Berden Giuliana14

Affiliation:

1. Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias de la Atmósfera y los Océanos Universidad de Buenos Aires Buenos Aires Argentina

2. Centro de Investigaciones del Mar y la Atmósfera (CIMA) CONICET–Universidad de Buenos Aires Buenos Aires Argentina

3. Instituto Franco‐Argentino para el Estudio del Clima y sus Impactos (UMI 3351 IFAECI) CNRS–IRD–CONICET–UBA Buenos Aires Argentina

4. Departamento Oceanografía Servicio Hidrografía Naval Buenos Aires Argentina

Abstract

In this study, the assimilation of tide gauge and altimetry data into a two‐dimensional barotropic numerical model for the southwestern Atlantic continental shelf (SWACS) was developed. To do this, the preoperative 4‐day storm surges ensemble prediction system developed by Dinápoli et al. (2021, Journal of the Royal Meteorological Society 147: 557–572) was implemented for the SWACS. This new configuration, called “Model for Storm Surge Simulations” (M3S), considers a curvilinear grid that covers the SWACS with higher resolution along the shoreline (from 2 to 10 km). M3S was forced with an ensemble of 60 members conformed by the combination of perturbations of the eight principal tidal constituents and of the atmospheric products derived from the Global Ensemble Forecast System. Tidal gauge and altimetry data were assimilated in an asynchronous mode using the four‐dimensional‐ensemble square‐root filter (4DEnSRF). The system was developed and validated forecasting two strong positive storm surges. Results show that 4DEnSRF's innovations produce a positive impact upon the forecast skill up to 2 days. Hence, the 4‐day forecast can be divided into two parts: the first 2 days with a stronger dependence on the initial conditions and the other 2 days purely driven by external forcing. It was found that a symmetric assimilation window of 12 hr length produces the best initial condition. Under this configuration, 4DEnSRF removes biases and improves the timing of the M3S forecasted solutions. The largest improvements were observed at the northern SWACS, where more chaotic processes, such as the atmospheric circulation, explain a large part of the sea‐surface height variability. No significant improvements were found at the southern SWACS, which can be attributed to the strong tidal dynamics that characterise the zone. Our results show that the incorporation of 4DEnSRF into M3S can significantly improve the forecast in the SWACS and also the accuracy of the short‐range detection of storm surges.

Funder

Consejo Nacional de Investigaciones Científicas y Técnicas

Universidad de Buenos Aires

Publisher

Wiley

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3