Lattice Boltzmann simulation of effects of realistic boundary conditions on volumetric radiation‐conduction melting of a novel cylindrical enclosure filled with phase change materials

Author:

Zameni‐Ghalati Saeideh1ORCID,Mehryar Reza1ORCID,Imani Gholamreza2ORCID

Affiliation:

1. Department of Mechanical Engineering Shiraz University of Technology Shiraz Iran

2. Department of Mechanical Engineering Persian Gulf University Bushehr Iran

Abstract

AbstractIn this research, a novel solar latent heat thermal energy storage (LHTES) system, including the cylindrical enclosures filled with a phase change material (PCM), is proposed, which can be installed on the building windows to alleviate the drawbacks of traditional PCM‐filled double‐glazed windows, such as daylight hindrance and leakage. The lattice Boltzmann method (LBM) is used to simulate the volumetric radiation‐conduction melting of the PCM within a single cylinder of the proposed LHTES system with considering more realistic conditions such as convective boundary condition, shadow effect, and variable solar radiation angle compared with the available works in the literature. As such, several boundary conditions are assessed, and parameters such as cylinder diameter, extinction coefficient, scattering albedo, solar angle, shadow effect, and natural convection heat transfer coefficient are studied on the time history of the melting fraction and charging time. The results revealed that considering the applied conditions, such as convection heat loss to the environment and shadow, significantly affects the charging time of the system. It is shown that the charging time for convective boundary condition with , , and increases, respectively, by 11%, 30%, and 50% relative to a case with the insulated boundary condition without the shadow effect and 38%, 91%, and 175% compared with the insulated case with a 90° shadow.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3