A matrix technique‐based numerical treatment of a nonlocal singular boundary value problems

Author:

Sriwastav Nikhil1,Barnwal Amit K.2,Srivastav Avinash Kumar2,Chandra Harish2

Affiliation:

1. Department of Mathematics Chandigarh University Mohali India

2. Department of Mathematics and Scientific Computing Madan Mohan Malaviya University of Technology Gorakhpur India

Abstract

The mathematical modeling of the decisive event of astrophysics, physiology, and many other areas of science and technology witness the involvement of singular boundary value problems. The nonlocal boundary conditions are more informative than local boundary conditions (initial conditions and two‐point boundary conditions) to evaluate some mathematical models. This article presents a collocation approach‐based matrix technique to approximate the solution of the fusion of a class of singular differential equations subject to nonlocal three‐point boundary conditions. The proposed strategy utilizes the truncation of the series expansion of a function belonging to in terms of Bernoulli polynomials. It transforms the singular boundary value problems into a set of nonlinear algebraic equations, which can be dealt with by any mathematical software. The Lipschitz condition on an equivalent completely continuous nonlinear operator has been used to prove the convergence analysis of the scheme. Some extremely nonlinear test examples are solved and provided in contrast with the exact solution. These numerical results are also examined against some existing numerical techniques to verify the applicability and significance of the proposed methodology. There are a few numerical examples that are application based but do not have exact solutions. In such cases, residual error norm is employed to measure the accuracy of the numerical strategies. The computational data demonstrate the superiority and validity of the proposed technique over existing numerical approaches.

Publisher

Wiley

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3