Affiliation:
1. DTCH University Grenoble Alpes – CEA/LITEN Grenoble Cedex 9 France
2. Sunfire GmbH Dresden Germany
Abstract
AbstractIn the current landscape of high temperature electrolysis, mainly two solid oxide cell (SOC) technologies are being used: electrolyte‐supported and cathode‐supported SOCs. The geometrical differences, namely the thickness of the electrolyte, can lead to vastly different operating temperatures. Since most phenomena affecting performance and durability remain thermally activated, comparing stack technologies can be a difficult endeavor at best.While the most visible goal of the European project MultiPLHY consists of Sunfire GmbH building the first multi‐megawatt solid oxide electrolyzer, a work package is being dedicated to stack testing in a laboratory environment. A harmonized protocol was first elaborated to allow comparing different stack technologies. It includes the recording of performance maps, several galvanostatic steps in thermoneutral conditions, as well as load point and thermal cycles. Subsequently, Sunfire operated a pile‐up of two 30‐cell electrolyte‐supported stacks for over 8200 h, while a 25‐cell cathode‐supported stack was tested at CEA for 6800 h.The present article aims at presenting the findings gathered during the implementation of the protocol. This benchmark study puts forward performance maps as well as voltage and stack temperature profiles over time, and discusses some of the difficulties inherent to long‐term testing.
Funder
Fuel Cells and Hydrogen Joint Undertaking
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Reference45 articles.
1. Global Hydrogen Review 2022 International Energy Agency IEA Paris France https://www.iea.org/reports/global‐hydrogen‐review‐2022(accessed: October 2023).
2. REPowerEU Plan European Commission Brussles Belgium press release with download option https://ec.europa.eu/commission/presscorner/detail/en/ip_22_3131(accessed: October 2023).
3. MultiplHY project https://multiplhy‐project.eu/(accessed: October 2023)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献