Selective Oxidation of Glycerol to Glycolic and Oxalic Acids for Direct Glycerol Fuel Cell

Author:

Othman Putera Nik Aiman1,Karim Nabila A.1,Rusydi Febdian2

Affiliation:

1. Fuel Cell Institute Universiti Kebangsaan Malaysia Bangi Selangor Malaysia

2. Research Center for Quantum Engineering Design Faculty of Science and Technology and Department of Physics Faculty of Science and Technology Universitas Airlangga Surabaya Indonesia

Abstract

ABSTRACTThe direct glycerol fuel cell (DGFC) is a promising application, although the catalyst has limits and could be improved. This study used density functional theory (DFT) calculations to elucidate how the addition of silver (Ag) to a palladium (Pd) catalyst can change the mechanism of the glycerol oxidation reaction (GEOR). It was discovered that the glycerol easily oxidized at the primary carbon at the start of the reaction. Glyceraldehyde and glyceric acid are produced as intermediary products due to primary carbon oxidation using Pd3–Ag1 (111). The addition of Ag aided C–C cleavage during the reaction, converting glyceric acid to glycolic acid rather than tartronic acid. The selectivity of high‐value molecules such as glycolic and oxalic acid was more likely to increase due to the early C–C splitting. At the end of the possible chemical pathways, oxalic acid or formic acid can be generated with the nine electrons that can be transferred. This work's catalyst model and mechanism can be employed with a new alloy catalyst combination and modification or tested with a different type of alcohol or polyol as fuel. DFT analysis of the mechanism allows for more flexible improvement and design in the search for novel and better catalysts.

Funder

Universiti Kebangsaan Malaysia

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3