Revolutionizing Energy: Tailored ZnOFe2O3/rGO for Glucose Oxidation in Fuel Cell Application

Author:

Razali Nur Afifah Mat1,Yahya Norilhamiah1ORCID,Ishak Nurul Atiqah Izzati Md2,Karim Nabila A.3ORCID,Kamarudin Siti Kartom3ORCID

Affiliation:

1. Section of Environmental Engineering Technology Universiti Kuala Lumpur Malaysian Institute of Chemical and Bioengineering Technology (UniKL Micet) Alor Gajah Melaka Malaysia

2. Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology Sunway University Petaling Jaya Malaysia

3. Fuel Cell Institute Universiti Kebangsaan Malaysia Bangi Selangor Malaysia

Abstract

ABSTRACTMetal‐based catalysts such as platinum and gold are frequently employed as electrocatalysts. However, they faced significant limitations, including high cost and susceptibility to poisoning and degradation, hindering their extensive utilization. To overcome these challenges, metal oxide offers promising alternatives for its fast electron transfer rate, large surface area, and high electrocatalytic activity in electrochemical oxidation materials. In this work, ZnO doped with Fe2O3 was scattered on reduced graphene oxide (rGO) to form a ZnOFe2O3/rGO hybrid by a hydrothermal method for glucose oxidation. The synthesized ZnOFe2O3/rGO composite was thoroughly characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and X‐ray photoelectron spectra (XPS) analysis, and the electrochemical performance was evaluated using cyclic voltammetry. ZnO particles are highly uniform flowerlike particles interacting with uniform‐size spherical‐like particles of Fe2O3 in ZnO–Fe2O3 supported on the rGO. The result reveals that interaction between ZnO–Fe2O3 nanocomposites supported onto graphene sheets reduces agglomeration compared to parent nanoparticles. An increase in surface‐to‐volume ratio exhibits more surface‐active sites for electrooxidation and thus improved catalytic performance by a negatively shifted potential of −36.62 mV versus Ag/AgCl, representing appropriate electrocatalysts for use as the anode in glucose fuel cells. The maximum current density of 0.5201 mA cm−2 was achieved in the electrochemical glucose oxidation equipped with ZnOFe2O3/rGO, which was almost 20 and 3 times higher than ZnO and Fe2O3, respectively. The synergistic interaction of ZnO–Fe2O3 supported on rGO showed a vital role as an electrocatalytic mediator to facilitate the charge transfer for glucose oxidation.

Funder

Ministry of Higher Education

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3