The impact of baffle and taper channel tilt angle on the output performance of proton‐exchange membrane fuel cells

Author:

Cheng Tiancai1ORCID,Liu Qiang1,Jiang Guangjun1,Zhao Qi1,Mu Dongming1

Affiliation:

1. School of Mechanical Engineering Inner Mongolia University of Technology (IMUT) Hohhot China

Abstract

AbstractThe performance and durability of proton‐exchange membrane fuel cells (PEMFCs) are constrained by fuel delivery and water management. Based on parallel and serpentine flow fields, the effects of triangular baffles (30°, 45°, and 60°) and conical runners (1°, 2°, and 3°) on the performance output of PEMFC at different angles are studied. The three‐dimensional and multi‐phase models are established by using the simulation software package (ANSYS FLUENT). The findings demonstrate that the battery's output performance reaches its peak when the baffle angle is set at 45°. When the output current density is 0.7 A/cm2, the power density of the 45° baffle increases by 18.87%. The pressure loss is not only lower than that of the 60° baffle but also exhibits no significant difference when compared to the 30° baffle. In addition, the introduction of conical channels has enhanced the output performance of PEMFCs in comparison to the traditional serpentine flow field. The power density of the 2°tapered channel exhibits a 12.65% increase when the output current density reaches 0.8 A/cm2. However, the performance output of the 3°tapered channel is inferior to that of the conventional serpentine flow field.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3