Bipolar Plate Design Assessment: Proton Exchange Membrane Fuel Cell and Water Electrolyzer

Author:

Sarjuni C. T. Aisyah1,Shahril Ahmad Adam Danial1,Low Hock Chin1,Lim Bee Huah1ORCID

Affiliation:

1. Universiti Kebangsaan Malaysia, Fuel Cell Institute, Research Complex Bangi Selangor Malaysia

Abstract

ABSTRACTProton exchange membrane fuel cells (PEMFCs) as power generators and proton exchange membrane water electrolyzers (PEMWEs) as hydrogen fuel producers play critical roles in implementing hydrogen energy. The bipolar plates (BPPs) in both PEMFC and PEMWE facilitate the distribution of reactants and products, providing electrical connectivity in a series of singular cells. Although both systems are categorized under the same PEM spectrum, the differing reaction mechanisms require specialized plate properties to achieve optimum performance. This short review analyzes the characteristics of BPPs in both PEMFC and PEMWE, with a focus on the plate material, coating, and flow field. This short review concluded that the polymer composite graphite–based BPPs are the most feasible for PEMFC with no coating needed. PEMWE needs SS316 as a BPP material with a conductive coating to withstand the highly corrosive oxygen evolution reaction at the anode. The serpentine flow field showed dominance in PEMFC stack performance due to even fluid distribution and efficient liquid water drainage. However, its high‐pressure drop contributes to greater parasitic power. PEMWEs commonly adopt the parallel flow field for its lower contact resistance and bubble formation for efficient mass transport toward the cathode.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3