LSF films formed on YSZ electrolytes via polymeric precursor deposition for solid oxide fuel cell anode applications

Author:

Bilbey Buse12ORCID,Asghar M. Imran2,Arslan Leyla Colakerol3,Lund Peter D.2,Büyükaksoy Aligul1ORCID

Affiliation:

1. Department of Materials Science and Engineering Gebze Technical University Kocaeli Turkey

2. New Energy Technologies Group Department of Applied Physics Aalto University School of Science Espoo Finland

3. Department of Physics Gebze Technical University Gebze Kocaeli Turkey

Abstract

AbstractDifferent materials have been applied as anode in solid oxide fuel cell (SOFC). Perovskite structured materials are promising as an alternative electrode material to Ni. Here, we investigated perovskite‐structured mixed ionic and electronic conducting material, lanthanum strontium ferrite (LSF), which has typically been used as a cathode material. LSF has also shown potential for an anode in SOFC. LSF films with two different compositions, La0.6Sr0.4FeO3 (6LSF) and La0.8Sr0.2FeO3 (8LSF) were fabricated by a polymeric precursor method. The effects of the phase content, surface chemistry, and microstructure on the anode performance were investigated. It was found that a mixture of the Ruddlesden–Popper phase, SrCO3 phases, and rhombohedral perovskite exists in both cell structures. Both cells had Ruddlesden–Popper and SrCO3 phases at their surface, in addition to the rhombohedral perovskite. Symmetrical half‐cell measurements showed that the polarization resistance of 6LSF (0.34 Ω cm2) is lower than that of 8LSF (0.47 Ω cm2), mostly because of its highly porous microstructure as a result of slower A‐site diffusion rates induced by higher Sr content.The symmetrical 6LSF fuel and air electrodes exhibited ASRelectrode values of 0.34 and 0.14 Ω cm2, respectively, at 800 ˚C.

Funder

Academy of Finland

Publisher

Wiley

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3