Development and full system testing of novel co‐impregnated La0.20Sr0.25Ca0.45TiO3 anodes for commercial combined heat and power units

Author:

Price Robert1ORCID,Bausinger Holger2,Longo Gino2,Weissen Ueli2,Cassidy Mark1,Grolig Jan G.2,Mai Andreas2,Irvine John T. S.1

Affiliation:

1. School of Chemistry University of St Andrews St Andrews UK

2. HEXIS AG Winterthur Switzerland

Abstract

AbstractOver the past decade, the University of St Andrews and HEXIS AG have engaged in a highly successful collaborative project aiming to develop and upscale La0.20Sr0.25Ca0.45TiO3 (LSCTA‐) anode “backbone” microstructures, impregnated with Ce0.80Gd0.20O1.90 (CG20) and metallic electrocatalysts, providing direct benefits in terms of performance and stability over the current state‐of‐the‐art (SoA) Ni‐based cermet solid oxide fuel cell (SOFC) anodes.Here, we present a brief overview of previous work performed in this research project, including short‐term, durability, and poison testing of small‐scale (1 cm2 area) SOFCs and upscaling to full‐sized HEXIS SOFCs (100 cm2 area) in short stacks. Subsequently, recent results from short stack testing of SOFCs containing LSCTA‐ anodes with a variety of metallic catalyst components (Fe, Mn, Ni, Pd, Pt, Rh, or Ru) will be presented, indicating that only SOFCs containing the Rh catalyst provide comparable degradation rates to the SoA Ni/cerium gadolinium oxide anode, as well as tolerance to harsh overload conditions (which is not exhibited by SoA anodes). Finally, results from full system testing (60 cells within a 1.5 kW electrical power output HEXIS Leonardo FC40A micro‐combined heat and power unit), will be outlined, demonstrating the robust and durable nature of these novel oxide electrodes, in addition to their potential for commercialization.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3