Electrochemical impedance spectroscopy studies of the buffered and non‐buffered microbial fuel cell

Author:

Nourbakhsh Fatemeh123,Mohsennia Mohsen14,Pazouki Mohammad2

Affiliation:

1. Department of Chemistry University of Kashan Kashan Iran

2. Department of Energy Materials and Energy Research center Karaj Iran

3. Non‐metallic Materials Research Department, Niroo Research Institute Tehran Iran

4. Institute of Nanoscience and Nanotechnology University of Kashan Kashan Iran

Abstract

AbstractThe positive effect of buffers to maintain a sui pH for microorganism growth and increase the electrolyte conductivity in microbial fuel cells (MFCs) encourages more studies on the development of new buffer solutions. The effect of types of biological buffers such as phosphate, tris, succinate, and maleate on power production in dual chamber MFC inoculated by saccharomyces cerevisiae has been examined. Electrochemical impedance spectroscopy has been used for evaluating the performance of the buffered and non‐buffered MFC systems. Considering the important impact of buffer type on the resistance of ion migration within the electrolyte and electron transport resistance of the cell components, the internal resistance of the MFC with different used buffers has been obtained and compared. According to the obtained results, the tris buffer solution showed a positive influence on the power output with a power density of 25.41% higher than phosphate.

Publisher

Wiley

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3