Efficient online estimation and remaining useful life prediction based on the inverse Gaussian process

Author:

Xu Ancha1ORCID,Wang Jingyang2,Tang Yincai3,Chen Piao4

Affiliation:

1. School of Statistics and Mathematics Zhejiang Gongshang University Hangzhou China

2. Department of Industrial Systems Engineering and Management National University of Singapore Singapore

3. School of Statistics East China Normal University Shanghai China

4. ZJU‐UIUC Institute Zhejiang University Haining China

Abstract

AbstractFast and reliable remaining useful life (RUL) prediction plays a critical role in prognostic and health management of industrial assets. Due to advances in data‐collecting techniques, RUL prediction based on the degradation data has attracted considerable attention during the past decade. In the literature, the majority of studies have focused on RUL prediction using the Wiener process as the underlying degradation model. On the other hand, when the degradation path is monotone, the inverse Gaussian (IG) process has been shown as a popular alternative to the Wiener process. Despite the importance of IG process in degradation modeling, however, there remains a paucity of studies on the RUL prediction based on the IG process. Therefore, the principal objective of this study is to provide a systematic analysis of the RUL prediction based on the IG process. We first propose a series of novel online estimation algorithms so that the model parameters can be efficiently updated whenever a new collection of degradation measurements is available. The distribution of RUL is then derived, which could also be recursively updated. In view of the possible heterogeneities among different systems, we further extend the proposed online algorithms to the IG random‐effect model. Numerical studies and asymptotic analysis show that both the parameters and the RUL can be efficiently and credibly estimated by the proposed algorithms. At last, two real degradation datasets are used for illustration.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3