An efficient graph‐based peer selection method for financial statements

Author:

Noels Sander12ORCID,De Ridder Simon1ORCID,Viaene Sébastien1ORCID,De Bie Tijl2ORCID

Affiliation:

1. Silverfin Ghent Belgium

2. Department of Electronics and Information Systems Ghent University Ghent Belgium

Abstract

SummaryComparing companies can be useful for various purposes. Despite the widespread use of industry classification systems as a peer selection standard, these have been criticized for various reasons. Financial statements, however, offer a promising alternative to such classification systems. They are standardized, widely available, and offer deep insights into the nature of the company. In this paper, we present a graph distance metric for financial statements using the earth mover's distance. When using the distance metric on real‐world tasks such as peer identification and industry classification, it shows promising results in terms of accuracy and computational efficiency.

Funder

Agentschap Innoveren en Ondernemen

Vlaamse regering

Publisher

Wiley

Subject

Finance,General Business, Management and Accounting

Reference33 articles.

1. Who’s a major? A novel approach to peer group selection: Empirical evidence from oil and gas companies

2. Berardi G. Esuli A. Fagni T. &Sebastiani F.(2015).Classifying websites by industry sector: A study in feature design. InProceedings of the 30th Annual ACM Symposium on Applied Computing Association for Computing Machinery pp.1053–1059.https://doi.org/10.1145/2695664.2695722

3. Bernstein A. Clearwater S. &Provost F.(2003).The relational vector‐space model and industry classification. InProceedings of the Learning Statistical Models from Relational Data Workshop at the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI) pp.8–18.

4. Convex Optimization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3