Reduction of greenhouse gas emissions via flexible operation of cross‐sector integrated energy systems under uncertainties in demand, fuel prices, and solar irradiation

Author:

Li Ruonan1,Mahalec Vladimir1

Affiliation:

1. Department of Chemical Engineering McMaster University Hamilton Ontario Canada

Abstract

AbstractThis work investigates how the flexible operation of the light industrial plants integrated in a cross‐sector energy cluster with community energy systems can achieve further greenhouse gas (GHG) reductions under uncertainties associated with natural gas prices, solar irradiation, as well as heating, cooling, and electricity demand. The optimal flexible operation and design of a cross‐sector integrated cluster comprising a bakery plant, a brewery, a confectionery plant, a residential building, and a supermarket under uncertainties are compared to the operation and design of systems without uncertainties. When uncertainties are considered, the overall GHG emissions of the integrated system with steady industrial production rates for all uncertainty scenarios are over 4% higher than the integrated system in the deterministic scenario (a single scenario). Flexible operation of the industrial plants, whereby production rates are varied throughout the day, contributes an additional 3% reduction in GHG emissions under uncertainties, where the GHG emissions are only 1% higher than the deterministic scenario. Additionally, the system with flexible production rates purchases over 14.3% less electricity from the grid and uses over 72.2% less natural gas for operating the backup boiler, which relies less on supplementary energy resources. This shows that optimally designed integrated systems with flexible industry production schedules are resilient to uncertainties in energy demands, daily weather fluctuations, and fuel prices.

Funder

Ontario Research Foundation

Publisher

Wiley

Subject

General Chemical Engineering

Reference39 articles.

1. Complex networks for the integration of distributed energy systems in urban areas

2. A smart energy system approach vs a non-integrated renewable energy system approach to designing a future energy system in Zagreb

3. MES (multi-energy systems): An overview of concepts and evaluation models

4. A.Held M.Wietschel B.Pfluger M.Ragwitz Energy Integration Across Electricity Heating & Cooling and the Transport Sector—Sector Coupling Working Paper Sustainability and Innovation No. S08/2020 2020 http://hdl.handle.net/10419/223069 (accessed: January 2021).

5. From electricity smart grids to smart energy systems – A market operation based approach and understanding

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Issue Highlights;The Canadian Journal of Chemical Engineering;2023-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3