Predictive and sensitive analysis of a bivariate skewed spatial process based on the Bayesian framework

Author:

Wang Jiangyan1,Majumdar Anandamayee2,Lin Jinguan1ORCID

Affiliation:

1. Institute of Statistics and Data Science, School of Statistics and Data Science Nanjing Audit University Nanjing China

2. Department of Physical Sciences, School of Engineering, Technology and Sciences Independent University Bangladesh

Abstract

Bivariate spatial process is a natural tool for the assessments of environmental justice. Integrating the skewness arising in spatial data sets remains a challenge. While in terms of which, classical bivariate spatial skewness analysis receives relative little attention. As an attempt, this article provides a fully hierarchical bivariate approach for spatial modelling, using a Bayesian framework implemented via Markov chain Monte Carlo (MCMC) methods, called the bivariate double zero expectile normal with measurement error (BDZEXPNM). The BDZEXPNM modelling is derived by considering two variables simultaneously, where the covariance parameters representing the marginal and cross‐spatial dependence structure are measured. The posterior performance of BDZEXPNM is probed by leveraging multivariate spatial analysis. In addition, MCMC methods allows a straightforward interpretation of parameters. Simulation studies validate our method as well as a real data example.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Qinglan Project of Jiangsu Province of China

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3