Mitochondrial antioxidant elamipretide improves learning and memory impairment induced by chronic sleep deprivation in mice

Author:

Zhang Yue‐Ming1,Wang Ya‐Tao1,Wei Ru‐Meng1ORCID,Li Xue‐Yan1ORCID,Luo Bao‐Ling1,Zhang Jing‐Ya1,Zhang Kai‐Xuan1,Fang Shi‐Kun1,Liu Xue‐Chun2,Chen Gui‐Hai1ORCID

Affiliation:

1. Department of Neurology (Sleep Disorders) The Affiliated Chaohu Hospital of Anhui Medical University Hefei Anhui P. R. China

2. Department of Neurology The Second People's Hospital of Hefei and Affiliated Hefei Hospital of Anhui Medical University Hefei Anhui P. R. China

Abstract

AbstractBackgroundThe inflammation and synaptic dysfunction induced by mitochondrial dysfunction play essential roles in the learning and memory impairment associated with sleep dysfunction. Elamipretide (SS‐31), a novel mitochondrion‐targeted antioxidant, was proven to improve mitochondrial dysfunction, the inflammatory response, synaptic dysfunction, and cognitive impairment in models of cerebral ischemia, sepsis, and type 2 diabetes. However, the potential for SS‐31 to improve the cognitive impairment induced by chronic sleep deprivation (CSD) and its underlying mechanisms is unknown.MethodsAdult c57BL/6J mice were subjected to CSD for 21 days using an activity wheel accompanied by daily intraperitoneal injection of SS‐31 (5 mg/kg). The novel object recognition and Morris water maze test were used to evaluate hippocampus‐dependent cognitive function. Western blotting and reverse transcription‐quantitative polymerase chain reaction assays were used to determine the effects of CSD and SS‐31 on markers of mitochondria, inflammation response, and synaptic function. Enzyme‐linked immunosorbent assays were used to examine the levels of proinflammatory cytokines.ResultsSS‐31 could improve the cognitive impairment induced by CSD. In particular, SS‐31 treatment restored the CSD‐induced decrease in sirtuin 1 (SIRT1) and peroxisome proliferator‐activated receptor γ coactivator alpha levels and the increase in levels nuclear factor kappa‐B and inflammatory cytokines, including interleukin (IL)‐1β, IL‐6, and tumor necrosis factor‐alpha. Furthermore, SS‐31 significantly increased the levels of brain‐derived neurotrophic factor, postsynaptic density protein‐95, and synaptophysin in CSD mice.ConclusionTaken together, these results suggest that SS‐31 could improve CSD‐induced mitochondrial biogenesis dysfunction, inflammatory response, synaptic dysfunction, and cognitive impairment by increasing SIRT1 expression levels.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3