Topographical effect of high embankments on resistivity investigation of the underlying permafrost table

Author:

You Yanhui1ORCID,Pan Xicai2,Fu Wei3,Wang Yun3,Yu Qihao1,Guo Lei1ORCID,Wang Xinbin1

Affiliation:

1. State Key Laboratory of Frozen Soils Engineering, Northwest Institute of Eco‐Environment and Resources Chinese Academy of Sciences Lanzhou China

2. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences Nanjing China

3. Second Highway Consultants Co., Ltd China Communications Construction Corporation Wuhan China

Abstract

AbstractInvestigation of resistivity has been effectively used in assessing the risks of embankmentation and failure. A two‐dimensional (2D) approximation of the surveyed object is commonly assumed for a survey line on the road surface. However, this approximation may not be met when resistivity investigations are conducted over a raised high embankment; under these conditions, regular inversions might yield erroneous results. This study explored the topographical effect of a high embankment on resistivity measurements by forward and inverse modeling of a 3D high embankment model. The results show that a 2D approximation of the survey lines on the road surface significantly increases the apparent resistivity within the depth of the raised embankment. Maximum relative errors reached 21% and 11% for the road shoulder and midline survey lines, respectively. The biased apparent resistivity resulted in an inverted resistivity that was higher than the true values, although resistivity contrasts can still identify interfaces between layers. A geometric factor was used to correct the biased apparent resistivity to eliminate the high embankment topographical effect. Inversion results of the corrected apparent resistivity agreed well with the forward model. The method was then verified by field application. The apparent resistivity of the field data collected on a high embankment in permafrost regions on the Qinghai–Tibet Plateau was corrected before inversion. The permafrost table derived from the inverted resistivity was verified based on borehole temperatures. These findings indicate that the topographical influence of high embankments on resistivity measurements needs to be considered. Correction of the apparent resistivity is indispensable for quantitative interpretation of the inverted resistivity.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Wiley

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3