Protective role of eugenol against diabetes‐induced oxidative stress, DNA damage, and apoptosis in rat testes

Author:

Chilukoti Sri R.1,Sahu Chittaranjan1,Jena Gopabandhu1ORCID

Affiliation:

1. Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar Mohali Punjab India

Abstract

AbstractDiabetes mellitus, a metabolic disorder alters gonadal development and spermatogenesis, reactive oxygen species production, DNA damage, and apoptosis, which subsequently lead to male subfertility. Eugenol is an antioxidant, traditionally used as medication for digestive disorders and antioxidant therapy, decrease transport of glucose from GIT to systemic circulation. This experiment was aimed to decipher cellular and molecular insights of eugenol in protecting diabetic germ cells in rats. Rats were assigned randomly into five groups: control, eugenol control (Eugenol 400; EUG), diabetic (DIA), diabetic + eugenol 100 (DIA + EUG 100), and diabetic + eugenol 400 (DIA + EUG 400). EUG 400 and DIA + EUG 400 groups received 400 mg/kg eugenol orally. DIA + EUG 100 group received 100 mg/kg eugenol. Treatment was conducted for 4 weeks. Type 1 diabetes was induced by injecting a single i.p. dose of streptozotocin (55 mg/kg). Morphometric, biochemical, sperm parameters, oxidative stress, hormonal levels, histopathology, and fibrosis in the testis and epididymis, were evaluated. DNA damage was evaluated using halo and comet assays; DNA fragmentation and apoptosis using TUNEL assay. Eugenol treatment significantly normalized biochemical parameters, reduced MDA while increased albumin and GSH levels in diabetes. Eugenol significantly increased sperm numbers, motility and attenuated abnormal sperm head morphology in diabetes. Moreover, eugenol significantly reversed diabetes‐induced cellular damages, altered spermatogenesis, and collagen deposition in testis and epididymis. It also significantly attenuated diabetes‐associated DNA breaks and apoptosis. These findings suggest that 4 weeks treatment with 400 mg/kg of eugenol could be beneficial for diabetic patients to prevent subfertility.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Toxicology,Molecular Biology,Molecular Medicine,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3