Hybrid Life: Integrating biological, artificial, and cognitive systems

Author:

Baltieri Manuel12ORCID,Iizuka Hiroyuki34ORCID,Witkowski Olaf456,Sinapayen Lana78ORCID,Suzuki Keisuke4ORCID

Affiliation:

1. Araya Inc. Tokyo Japan

2. Department of Informatics University of Sussex Brighton UK

3. Faculty of Information Science and Technology Hokkaido University Sapporo Japan

4. Center for Human Nature, Artificial Intelligence and Neuroscience (CHAIN) Hokkaido University Sapporo Japan

5. Cross Labs, Cross Compass Kyoto Japan

6. College of Arts and Sciences University of Tokyo Tokyo Japan

7. Sony Computer Science Laboratories Kyoto Japan

8. National Institute for Basic Biology Okazaki Japan

Abstract

AbstractArtificial life is a research field studying what processes and properties define life, based on a multidisciplinary approach spanning the physical, natural, and computational sciences. Artificial life aims to foster a comprehensive study of life beyond “life as we know it” and toward “life as it could be,” with theoretical, synthetic, and empirical models of the fundamental properties of living systems. While still a relatively young field, artificial life has flourished as an environment for researchers with different backgrounds, welcoming ideas, and contributions from a wide range of subjects. Hybrid Life brings our attention to some of the most recent developments within the artificial life community, rooted in more traditional artificial life studies but looking at new challenges emerging from interactions with other fields. Hybrid Life aims to cover studies that can lead to an understanding, from first principles, of what systems are and how biological and artificial systems can interact and integrate to form new kinds of hybrid (living) systems, individuals, and societies. To do so, it focuses on three complementary perspectives: theories of systems and agents, hybrid augmentation, and hybrid interaction. Theories of systems and agents are used to define systems, how they differ (e.g., biological or artificial, autonomous, or nonautonomous), and how multiple systems relate in order to form new hybrid systems. Hybrid augmentation focuses on implementations of systems so tightly connected that they act as a single, integrated one. Hybrid interaction is centered around interactions within a heterogeneous group of distinct living and nonliving systems. After discussing some of the major sources of inspiration for these themes, we will focus on an overview of the works that appeared in Hybrid Life special sessions, hosted by the annual Artificial Life Conference between 2018 and 2022.This article is categorized under: Neuroscience > Cognition Philosophy > Artificial Intelligence Computer Science and Robotics > Robotics

Publisher

Wiley

Subject

General Psychology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3